Chain Rule

- 1. Suppose that f and g are differentiable functions. Also suppose that f is a decreasing function and g is an increasing function. What can you conclude about $\frac{d}{dx}f(g(x))$? Explain.
- 2. If f is a differentiable function, then $\frac{d}{dx}(x \cdot f(x^2)) =$
 - (a) $f(x^2) + 2x^2 f'(x^2)$
 - (b) f'(2x)
 - (c) $f'(x^2) \cdot 2x$
 - (d) $f'(3x^2)$
 - (e) $f(x^2) + x \cdot f'(x^2)$

3. If $f(x) = \cos(-x)$, then the third derivative f'''(x), is equal to:

- (a) $\sin(-x)$
- (b) $\cos(-x)$
- (c) $-\cos(-x)$
- (d) $-\sin(-x)$
- (e) $-\sin(x)$
- 4. Let $f(x) = \tan^3(x) + \tan(x^3)$. Find $\frac{df}{dx}$.
- 5. Suppose that y = f(u) and u = g(x) are differentiable functions of the input variables u and x respectively, and the image of g is contained in the domain of f. The derivative of the composite function $y = [f \circ g](x)$ at the input value x = 2 is given by the formula:
 - (a) $[f \circ g]'(2) = f'(2)g'(2)$
 - (b) $[f \circ g]'(2) = f'(g'(2))$
 - (c) $[f \circ g]'(2) = f'(2)g(2) + g'(2)f(2)$
 - (d) $[f \circ g]'(2) = f'(g(2))g'(2)$
 - (e) $[f \circ g]'(2) = f(g(2))$