Chain Rule

1. Suppose that f and g are differentiable functions. Also suppose that f is a decreasing function and g is an increasing function. What can you conclude about $\frac{d}{d x} f(g(x))$? Explain.
2. If f is a differentiable function, then $\frac{d}{d x}\left(x \cdot f\left(x^{2}\right)\right)=$
(a) $f\left(x^{2}\right)+2 x^{2} f^{\prime}\left(x^{2}\right)$
(b) $f^{\prime}(2 x)$
(c) $f^{\prime}\left(x^{2}\right) \cdot 2 x$
(d) $f^{\prime}\left(3 x^{2}\right)$
(e) $f\left(x^{2}\right)+x \cdot f^{\prime}\left(x^{2}\right)$
3. If $f(x)=\cos (-x)$, then the third derivative $f^{\prime \prime \prime}(x)$, is equal to:
(a) $\sin (-x)$
(b) $\cos (-x)$
(c) $-\cos (-x)$
(d) $-\sin (-x)$
(e) $-\sin (x)$
4. Let $f(x)=\tan ^{3}(x)+\tan \left(x^{3}\right)$. Find $\frac{d f}{d x}$.
5. Suppose that $y=f(u)$ and $u=g(x)$ are differentiable functions of the input variables u and x respectively, and the image of g is contained in the domain of f. The derivative of the composite function $y=[f \circ g](x)$ at the input value $x=2$ is given by the formula:
(a) $[f \circ g]^{\prime}(2)=f^{\prime}(2) g^{\prime}(2)$
(b) $[f \circ g]^{\prime}(2)=f^{\prime}\left(g^{\prime}(2)\right)$
(c) $[f \circ g]^{\prime}(2)=f^{\prime}(2) g(2)+g^{\prime}(2) f(2)$
(d) $[f \circ g]^{\prime}(2)=f^{\prime}(g(2)) g^{\prime}(2)$
(e) $[f \circ g]^{\prime}(2)=f(g(2))$
